News Flash

कुतूहल : डिडो राणीची गोष्ट

डिडोने चातुर्याने कातड्याचे बारीक बारीक तुकडे करून ते जोडले व त्याचे अर्धवर्तुळ बनवले

(संग्रहित छायाचित्र)

इसवी सनपूर्व आठव्या शतकात डिडो राणीने कार्थेज राज्याची स्थापना कशी केली, याची एक आख्यायिका आहे. डिडोचा भाऊ पिग्मॅलियन याने डिडोच्या पतीला कपटाने मारले. त्यामुळे डिडो  साथीदारांना घेऊन आफ्रिकेच्या उत्तर किनाऱ्यावर गेली. तिथल्या प्रमुखाने तिला फक्त एका बैलाच्या कातडीने झाकली जाईल इतकी जमीन देऊ केली. डिडोने चातुर्याने कातड्याचे बारीक बारीक तुकडे करून ते जोडले व त्याचे अर्धवर्तुळ बनवले. व्यासाचा भाग किनाऱ्या लगत ठेवून उरलेल्या अर्धगोल जागेत तिने आपले राज्य वसवले. या आख्यायिकेत गणिताच्या विकासातील एक महत्त्वाचा प्रश्न आहे. ‘‘दिलेल्या ठरावीक परिमितीची कुठली एकप्रतलीय बंदिस्त आकृती जास्तीत जास्त क्षेत्रफळ व्यापू शकेल?’’

हा तो ‘डिडोचा प्रश्न’. क्षेत्रफळ फक्त परिमितीवर अवलंबून नसते. उदाहरणार्थ, ४७४ आणि ५७५ असे चौरस घेतल्यास दुसऱ्या चौरसाची परिमिती आणि क्षेत्रफळ दोन्ही पहिल्या चौरसापेक्षा जास्त होतील (२०>१६ एकक, २५>१६ चौरस एकक). पण ४७४चा चौरस आणि १७८चा आयत घेतल्यास आयताची परिमिती चौरसाच्या परिमितीपेक्षा अधिक व आयताचे क्षेत्रफळ चौरसाच्या क्षेत्रफळापेक्षा कमी असेल. क्षेत्रफळ व परिमिती यासंबंधी दोन महत्त्वाची उत्तरे  झेनोडोरस यांनी इ. स.पूर्व २०० वर्र्षं या कालखंडात शोधून काढली. त्यातील एक म्हणजे ‘‘बाजूंची संख्या आणि परिमिती निश्चित केली असेल तर कुठची बहुभुजाकृती जास्त क्षेत्रफळ सामावून घेईल?’’ या प्रश्नाचे उत्तर ‘सर्व बाजू व कोन समान असणारी सुसम बहुभुजाकृती.’ उदाहरणार्थ, समपरिमितीच्या अनंत वेगळ्या त्रिकोणांमध्ये समभुज त्रिकोणाचे क्षेत्रफळ सर्वाधिक असेल. समान परिमिती असणाऱ्या आणि बाजूंची संख्या वेगवेगळी असणाऱ्या सुसम बहुभुजाकृती घेतल्यास, उदाहरणार्थ समान परिमितीचे समभुज त्रिकोण, चौरस, नियमित पंचकोन इत्यादी घेतल्यास, सर्वाधिक बाजूंच्या बहुभुजाकृतीचे क्षेत्रफळ जास्त असेल हेसुद्धा झेनोडोरसने सिद्ध केले. वर्तुळ म्हणजे अनंत भुजांची नियमित बहुभुजाकृती. त्यामुळे वर्तुळाचे क्षेत्रफळ तितकीच परिमिती असणाऱ्या कुठच्याही नियमित बहुभुजाकृतीपेक्षा अधिक असणार हे ओघाने आलेच, पण वर्तुळाची तुलना समपरिमितीच्या इतर बंदिस्त वक्राकारांशी केल्यास काय होईल, या प्रश्नाच्या उत्तरासाठी मात्र कलनशास्त्राचा (कॅलक्युलस) उदय होईपर्यंत थांबावे लागले. सतराव्या शतकात जेकब आणि जोहान्स बर्नुली या गणितज्ञ बंधूंनी या प्रश्नावर काम केले आणि पुन्हा वर्तुळच जिंकले. कुठच्याही बंदिस्त एकप्रतलीय समपरिमितीच्या आकारात वर्तुळाचेच क्षेत्रफळ सर्वाधिक असते असे त्यांनी सिद्ध केले.

कार्थेजची एक सीमा समुद्रकिनारा असल्याने डिडो राणीने वर्तुळाऐवजी अर्धवर्तुळ निवडले. डिडो राणीच्या अंतर्मनाने शोधलेले उत्तर व १७व्या शतकात प्रगत गणिताने दिलेले उत्तर सारखे निघाले.

–   प्रा. माणिक टेंबे

मराठी विज्ञान परिषद,

संकेतस्थळ : www.mavipa.org

ईमेल : office@mavipamumbai.org

लोकसत्ता आता टेलीग्रामवर आहे. आमचं चॅनेल (@Loksatta) जॉइन करण्यासाठी येथे क्लिक करा आणि ताज्या व महत्त्वाच्या बातम्या मिळवा.

First Published on April 27, 2021 12:13 am

Web Title: article on story of dido rani abn 97
Next Stories
1 नवदेशांचा उदयास्त : नायजेरिया स्वतंत्र झाला; पण…
2 कुतूहल : ‘१७२९’ची गोष्ट…
3 नवदेशांचा उदयास्त : ब्रिटिश अमलाखालील नायजेरिया…
Just Now!
X