News Flash

कुतूहल : सात पुलांचे कोडे

ऑयलरच्या निष्कर्षांनुसार, त्यामुळेच इथल्या सगळ्या पुलांवरून एकदाच चालून सुरुवातीच्या ठिकाणी पोहोचणे अशक्य होते.

(संग्रहित छायाचित्र)

प्रा. माणिक टेंबे

अठराव्या शतकाच्या उत्तरार्धातली ही गोष्ट! जुन्या जर्मनीतील, प्रुशिया भागातल्या क्योनिश्सबर्गमधून प्रेगेल नदी वाहत होती. या नदीतील दोन बेटे ही एकमेकांना तसेच नदीच्या दोन मुख्य किनाऱ्यांना, एकूण सात पुलांनी जोडली गेली होती. या रचनेवर एक कोडे तयार केले गेले होते. ‘इथल्या कुठल्याही भूभागावरून सुरुवात करून प्रत्येक पूल एकदा आणि एकदाच चालून जायचा व जिथून सुरुवात केली तिथे परत पोहोचायचे,’ असे हे कोडे. अनेकांनी प्रयत्न करूनही असा मार्ग सापडत नव्हता. शेवटी जर्मन गणितज्ञ लिओनहार्ड ऑयलर याला हा प्रश्न विचारला गेला. ऑयलर याने ही दोन बेटे, दोन मुख्य किनारे आणि सात पूल यांचे गणिती प्रारूप बनवले. त्यात किनारे आणि बेटे दर्शवणारे चार बिंदू दाखवले. जे-जे दोन भूभाग पुलांनी जोडले होते, ते भूभाग दर्शवणारे बिंदू त्यांनी रेषांनी जोडले. चार भूभागांचे चार बिंदू व सात पुलांच्या सात रेषा असे हे प्रारूप तयार झाले.

आता या प्रारूपातील आकृती पेन्सिल न उचलता आणि कुठचीही रेषा पुन्हा न गिरवता, पूर्ण करायची होती. यासाठी बिंदूकडे येताना आणि बिंदूपासून दूर जाताना वापरण्याच्या रेषा वेगवेगळ्या असणे गरजेचे होते. म्हणजे प्रत्येक वेळी त्या-त्या बिंदूजवळच्या रेषा या जोडीच्या स्वरूपात असायला हव्या. एखाद्या बिंदूकडे ‘न’ रेषा येत असल्यास, त्या बिंदूला एकूण ‘२ न’ म्हणजे सम संख्येतील रेषा जोडलेल्या असायला हव्या. त्यामुळे एखादा बिंदू विषम रेषांनी जोडला गेला असल्यास, ती आकृती वर म्हटलेल्या पद्धतीने पूर्ण करण्याचा मार्ग सापडणार नाही, हे ऑयलरने दाखवून दिले. क्योनिश्सबर्गमधील सात पुलांच्या प्रत्यक्ष मांडणीत, त्यातल्या बिंदूंपाशी विषम संख्येतील मार्ग एकत्र येत असल्याचे दिसून येत होते. ऑयलरच्या निष्कर्षांनुसार, त्यामुळेच इथल्या सगळ्या पुलांवरून एकदाच चालून सुरुवातीच्या ठिकाणी पोहोचणे अशक्य होते.

विविध बिंदू व त्यांना जोडणाऱ्या रेषांच्या अशा आकृत्यांना ‘आलेख’ म्हणतात. या सात पुलांच्या गोष्टीने ‘आलेख सिद्धांता’चा (ग्राफ थिअरी) पाया रचला गेला.

कुठल्याही गोष्टींमधले संबंध अथवा संबंधांचा अभाव अशा आलेखांनी दाखवता येत असल्याने अर्थशास्त्र, समाजशास्त्र, भाषाशास्त्र, अशा अनेक प्रांतांत आलेख सिद्धांताचा उपयोग होतो.

मराठी विज्ञान परिषद, वि. ना. पुरव मार्ग,  चुनाभट्टी,  मुंबई २२

office@mavipamumbai.org

लोकसत्ता आता टेलीग्रामवर आहे. आमचं चॅनेल (@Loksatta) जॉइन करण्यासाठी येथे क्लिक करा आणि ताज्या व महत्त्वाच्या बातम्या मिळवा.

First Published on April 10, 2019 12:13 am

Web Title: article on seven bridge puzzle
Next Stories
1 मेंदूशी मैत्री : बुद्धिमत्तांच्या छटा
2 मेंदूशी मैत्री : हुशार कोण?
3 कुतूहल : प्रश्न ढिगाऱ्याचा
Just Now!
X